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C H A P T E R 1

The Real Number System

You have already had several calculus courses in which you evaluated limits,
differentiated functions, and computed integrals. You may even remember
some of the major results of calculus, such as the Chain Rule, the Mean Value
Theorem, and the Fundamental Theorem of Calculus. Although you are proba-
bly less familiar with multivariable calculus, you have taken partial derivatives,
computed gradients, and evaluated certain line and surface integrals.

In view of all this, you must be asking: Why another course in calculus? The
answer to this question is twofold. Although some proofs may have been pre-
sented in earlier courses, it is unlikely that the subtler points (e.g., completeness
of the real numbers, uniform continuity, and uniform convergence) were cov-
ered. Moreover, the skills you acquired were mostly computational; you were
rarely asked to prove anything yourself. This course develops the theory of cal-
culus carefully and rigorously from basic principles and gives you a chance to
learn how to construct your own proofs. It also serves as an introduction to
analysis, an important branch of mathematics which provides a foundation for
numerical analysis, functional analysis, harmonic analysis, differential equations,
differential geometry, real analysis, complex analysis, and many other areas of
specialization within mathematics.

1.1 INTRODUCTION

Every rigorous study of mathematics begins with certain undefined concepts,
primitive notions on which the theory is based, and certain postulates, properties
which are assumed to be true and given no proof. Our study will be based on
the primitive notions of real numbers and sets, which will be discussed in this
section.

We shall use standard notation for sets and real numbers. For example, R or
(−∞,∞) represents the set of real numbers, ∅ represents the empty set (the set
with no elements), a ∈ A means that a is an element of A, and a /∈ A means that
a is not an element of A. We can represent a given finite set in two ways. We can
list its elements directly, or we can describe it using sentences or equations. For
example, the set of solutions to the equation x2 = 1 can be written as

{1,−1} or {x : x2 = 1}.
A set A is said to be a subset of a set B (notation: A ⊆ B) if and only if every

element of A is also an element of B. If A is a subset of B but there is at least
one element b ∈ B that does not belong to A, we shall call A a proper subset of
B (notation: A ⊂ B). Two sets A and B are said to be equal (notation: A = B)

From Chapter 1 of Introduction to Analysis, Fourth Edition. William R. Wade. 
Copyright © 2010 by Pearson Education, Inc. All rights reserved.
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2 Chapter 1 The Real Number System

if and only if A ⊆ B and B ⊆ A. If A and B are not equal, we write A �= B.
A set A is said to be nonempty if and only if A �= ∅.

The union of two sets A and B (notation: A ∪ B) is the set of elements x such
that x belongs to A or B or both. The intersection of two sets A and B (notation:
A ∩ B) is the set of elements x such that x belongs to both A and B. The com-
plement of B relative to A (notation: A \ B, sometimes Bc if A is understood)
is the set of elements x such that x belongs to A but does not belong to B. For
example,

{−1, 0, 1} ∪ {1, 2} = {−1, 0, 1, 2}, {−1, 0, 1} ∩ {1, 2} = {1},
{1, 2} \ {−1, 0, 1} = {2} and {−1, 0, 1} \ {1, 2} = {−1, 0}.

Let X and Y be sets. The Cartesian product of X and Y is the set of ordered
pairs defined by

X × Y := {(x, y) : x ∈ X, y ∈ Y }.
(The symbol := means “equal by definition” or “is defined to be.”) Two points
(x, y), (z, w) ∈ X × Y are said to be equal if and only if x = z and y = w.

Let X and Y be sets. A relation on X × Y is any subset of X × Y . Let R be a
relation on X × Y . The domain of R is the collection of x ∈ X such that (x, y)
belongs to R for some y ∈ Y . The range of R is the collection of y ∈ Y such
that (x, y) belongs to R for some x ∈ X . When (x, y) ∈ R, we shall frequently
write xRy.

A function f from X into Y (notation: f : X → Y ) is a relation on X ×Y whose
domain is X (notation: Dom( f ) := X) such that for each x ∈ X there is a unique
(one and only one) y ∈ Y that satisfies (x, y) ∈ f . If (x, y) ∈ f , we shall call y
the value of f at x (notation: y = f (x) or f : x �−→ y) and call x a preimage
of y under f . We said a preimage because, in general, a point in the range
of f might have more than one preimage. For example, since sin(kπ) = 0 for
k = 0,±1,±2, . . . , the value 0 has infinitely many preimages under f (x) = sin x .

If f is a function from X into Y , we will say that f is defined on X and call Y
the codomain of f . The range of f is the collection of all values of f ; that is, the
set Ran( f ) := {y ∈ Y : f (x) = y for some x ∈ X}. In general, then, the range
of a function is a subset of its codomain and each y ∈ Ran( f ) has one or more
preimages. If Ran( f ) = Y and each y ∈ Y has exactly one preimage, x ∈ X ,
under f , then we shall say that f : X → Y has an inverse, and shall define the
inverse function f −1 : Y → X by f −1(y) := x , where x ∈ X satisfies f (x) = y.

At this point it is important to notice a consequence of defining a function
to be a set of ordered pairs. By the definition of equality of ordered pairs, two
functions f and g are equal if and only if they have the same domain, and same
values; that is, f, g : X → Y , and f (x) = g(x) for all x ∈ X . If they have
different domains, they are different functions.

For example, let f (x) = g(x) = x2. Then f : [0, 1) → [0, 1) and g : (−1, 1) →
[0, 1) are two different functions. They both have the same range, [0, 1), but each
y ∈ (0, 1) has exactly one preimage under f , namely

√
y, and two preimages

under g, namely ±√
y. In particular, f has an inverse function, f −1(x) = √

x ,

2



Section 1.1 Introduction 3

but g does not. Making distinctions like this will actually make our life easier
later in the course.

For the first half of this course, most of the concrete functions we consider
will be real-valued functions of a real variable (i.e., functions whose domains and
ranges are subsets of R). We shall often call such functions simply real functions.

You are already familiar with many real functions.

1) The exponential function ex : R → (0,∞) and its inverse function, the natu-
ral logarithm

log x :=
∫ x

1

dt

t
,

defined and real-valued for each x ∈ (0,∞). (Although this last function is
denoted by ln x in elementary calculus texts, most analysts denote it, as we
did just now, by log x . We will follow this practice throughout this text. For a
more constructive definition, see Exercise 4.5.5.)

2) The trigonometric functions (whose formulas are) represented by sin x, cos x,
tan x, cot x, sec x , and csc x , and the inverse trigonometric functions arcsin x,
arccos x , and arctan x whose ranges are, respectively, [−π/2, π/2], [0, π], and
(−π/2, π/2).

3) The power functions xα , which can be defined constructively (see
Appendix A.10 and Exercise 3.3.11) or by using the exponential function:

xα := eα log x , x > 0, α ∈ R.

We assume that you are familiar with the various algebraic laws and identities
that these functions satisfy. A list of the most widely used trigonometric identi-
ties can be found in Appendix B. The most widely used properties of the power
functions are x0 = 1 for all x �= 0; xn = x · . . . · x (there are n factors here) when
n = 1, 2, . . . and x ∈ R; xα > 0, xα · xβ = xα+β , and (xα)β = xα·β for all x > 0
and α, β ∈ R; xα = m

√
x when α = 1/m for some m ∈ N and the indicated root

exists and is real; and 0α := 0 for all α > 0. (The symbol 00 is left undefined
because it is indeterminate [see Example 4.31].)

We also assume that you can differentiate algebraic combinations of these
functions using the basic formulas (sin x) = cos x, (cos x) = − sin x , and (ex ) =
ex , for x ∈ R; (log x) = 1/x and (xα) = αxα−1, for x > 0 and α ∈ R; and

(tan x) = sec2 x for x �= (2n + 1)π

2
, n ∈ Z.

(You will have an opportunity to develop some of these rules in the exercises,
e.g., see Exercises 4.2.9, 4.4.6, 4.5.3, 5.3.7, and 5.3.8.) Even with these assump-
tions, we shall repeat some material from elementary calculus.

We mentioned postulates in the opening paragraph. In the next two sections,
we will introduce three postulates (containing a total of 13 different properties)
which characterize the set of real numbers. Although you are probably already
familiar with all but the last of these properties, we will use them to prove other

3



4 Chapter 1 The Real Number System

equally familiar properties (e.g., in Example 1.4 we will prove that if a �= 0, then
a2 > 0).

Why would we assume some properties and prove others? At one point,
mathematicians thought that all laws about real numbers were of equal weight.
Gradually, during the late 1800s, we discovered that many of the well-known
laws satisfied by R are in fact consequences of others. The net result of this
research is that the 13 properties listed below are considered to be fundamental
properties describing R. All other laws satisfied by real numbers are secondary
in the sense that they can be proved using these fundamental properties.

Why would we prove a law that is well known, perhaps even “obvious”? Why
not just assume all known properties about R and proceed from there? We
want this book to be reasonably self-contained, because this will make it easier
for you to begin to construct your own proofs. We want the first proofs you
see to be easily understood, because they deal with familiar properties that are
unobscured by new concepts. But most importantly, we want to form a habit of
proving all statements, even seemingly “obvious” statements.

The reason for this hard-headed approach is that some “obvious” statements
are false. For example, divide an 8 × 8-inch square into triangles and trapezoids
as shown on the left side of Figure 1.1. Since the 3-inch sides of the triangles
perfectly match the 3-inch sides of the trapezoids, it is “obvious” that these tri-
angles and trapezoids can be reassembled into a rectangle (see the right side of
Figure 1.1). Or is it? The area of the square is 8 × 8 = 64 square inches but the
area of the rectangle is 5 × 13 = 65 square inches. Since you cannot increase
area by reassembling pieces, what looked right was in fact wrong. By comput-
ing slopes, you can verify that the rising diagonal on the right side of Figure 1.1
is, in fact, four distinct line segments that form a long narrow diamond which
conceals that extra one square inch.

NOTE: Reading a mathematics book is different from reading any other kind
of book. When you see phrases like “you can verify” or “it is easy to see,” you
should use pencil and paper to do the calculations to be sure what we’ve said is
correct.

Here is another example. Grab a calculator and graph the functions y =
log x and y = 100

√
x . It is easy to see, using calculus, that log x and 100

√
x are

both increasing and concave downward on [0,∞). Looking at the graphs (see
Figure 1.2), it’s “obvious” that log x is much larger than 100

√
x no matter how big

x is. Or is it? Let’s evaluate each function at e1000: log(e1000) = 1000 log e = 1000
is much smaller than 100

√
e1000 = e10 ≈ 22, 000. Evidently, the graph of y = 100

√
x

8

8 5

5
335

5

3

FIGURE 1.1
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Section 1.2 Ordered Field Axioms 5
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eventually crosses that of y = log x . With a little calculus, you can prove that
log x < 100

√
x forever after that (see Exercise 4.4.6a).

What can be learned from these examples? We cannot always trust what
we think we see. We must, as above, find some mathematical way of testing
our perception, either verifying that it is correct, or rejecting it as wrong. This
type of phenomenon is not a rare occurrence. You will soon encounter several
other plausible statements that are, in fact, false. In particular, you must harbor
a skepticism that demands proofs of all statements not assumed in postulates,
even the “obvious” ones.

What, then, are you allowed to use when solving the exercises? You may use
any property of real numbers (e.g., 2 + 3 = 5, 2 < 7, or

√
2 is irrational) without

reference or proof. You may use any algebraic property of real numbers involv-
ing equal signs [e.g., (x + y)2 = x2 + 2xy + y2 or (x + y)(x − y) = x2 − y2]
and the techniques of calculus to find local maxima or minima of a given func-
tion without reference or proof. After completing the exercises in Section 1.2,
you may also use any algebraic property of real numbers involving inequalities
(e.g., 0 < a < b implies 0 < ax < bx for all x > 0) without reference or proof.

1.2 ORDERED FIELD AXIOMS

In this section we explore the algebraic structure of the real number system. We
shall assume that the set of real numbers, R, is a field (i.e., that R satisfies the
following postulate).

Postulate 1. [FIELD AXIOMS]. There are functions + and ·, defined on R2 :=
R × R, which satisfy the following properties for every a, b, c ∈ R:
Closure Properties. a + b and a · b belong to R.
Associative Properties. a + (b + c) = (a + b)+ c and a · (b · c) = (a · b) · c.
Commutative Properties. a + b = b + a and a · b = b · a.
Distributive Law. a · (b + c) = a · b + a · c.

5



6 Chapter 1 The Real Number System

Existence of the Additive Identity. There is a unique element 0 ∈ R such that
0 + a = a for all a ∈ R.
Existence of the Multiplicative Identity. There is a unique element 1 ∈ R such
that 1 �= 0 and 1 · a = a for all a ∈ R.
Existence of Additive Inverses. For every x ∈ R there is a unique element
−x ∈ R such that

x + (−x) = 0.

Existence of Multiplicative Inverses. For every x ∈ R \ {0} there is a unique
element x−1 ∈ R such that

x · (x−1) = 1.

We note in passing that the word unique can be dropped from the statements
in Postulate 1 (see Appendix A).

We shall usually denote a + (−b) by a − b, a · b by ab, a−1 by 1
a or 1/a, and

a · b−1 by a
b or a/b. Notice that by the existence of additive and multiplicative

inverses, the equation x + a = 0 can be solved for each a ∈ R, and the equation
ax = 1 can be solved for each a ∈ R provided that a �= 0.

From these few properties (i.e., from Postulate 1), we can derive all the usual
algebraic laws of real numbers, including the following:

(−1)2 = 1, (1)
0 · a = 0, −a = (−1) · a, −(−a) = a, a ∈ R, (2)

−(a − b) = b − a, a, b ∈ R, (3)

and

a, b ∈ R and ab = 0 imply a = 0 or b = 0. (4)

We want to keep our attention sharply focused on analysis. Since the proofs
of algebraic laws like these lie more in algebra than analysis (see Appendix A),
we will not present them here. In fact, with the exception of the absolute value
and the Binomial Formula, we will assume all material usually presented in a
high school algebra course (including the quadratic formula and graphs of the
conic sections).

Postulate 1 is sufficient to derive all algebraic laws of R, but it does not com-
pletely describe the real number system. The set of real numbers also has an
order relation (i.e., a concept of “less than”).

Postulate 2. [ORDER AXIOMS]. There is a relation < on R × R that has the
following properties:
Trichotomy Property. Given a, b ∈ R, one and only one of the following state-
ments holds:

a < b, b < a, or a = b.

Transitive Property. For a, b, c ∈ R,

a < b and b < c imply a < c.

6



Section 1.2 Ordered Field Axioms 7

The Additive Property. For a, b, c ∈ R,

a < b and c ∈ R imply a + c < b + c.

The Multiplicative Properties. For a, b, c ∈ R,

a < b and c > 0 imply ac < bc

and

a < b and c < 0 imply bc < ac.

By b > a we shall mean a < b. By a ≤ b and b ≥ a we shall mean a < b or
a = b. By a < b < c we shall mean a < b and b < c. In particular, 2 < x < 1
makes no sense at all.

WARNING. There are two Multiplicative Properties, so every time you multiply
an inequality by an expression, you must carefully note the sign of that expression
and adjust the inequality accordingly. For example, x < 1 does NOT imply that
x2 < x unless x > 0. If x < 0, then by the Second Multiplicative Property, x < 1
implies x2 > x .

We shall call a number a ∈ R nonnegative if a ≥ 0 and positive if a > 0.
Postulate 2 has a slightly simpler formulation using the set of positive elements
as a primitive concept (see Exercise 1.2.11). We have introduced Postulate 2 as
above because these are the properties we use most often.

The real number system R contains certain special subsets: the set of natural
numbers

N := {1, 2, . . . },
obtained by beginning with 1 and successively adding 1s to form 2 := 1+1, 3 :=
2 + 1, and so on; the set of integers

Z := {. . . ,−2,−1, 0, 1, 2, . . . }

(Zahl is German for number); the set of rationals (or fractions or quotients)

Q :=
{m

n
: m, n ∈ Z and n �= 0

}
;

and the set of irrationals

Qc = R \ Q.

Equality in Q is defined by

m

n
= p

q
if and only if mq = np.

7



8 Chapter 1 The Real Number System

Recall that each of the sets N, Z, Q, and R is a proper subset of the next; that is,

N ⊂ Z ⊂ Q ⊂ R.

For example, every rational is a real number (because m/n := mn−1 is a real
number by Postulate 1), but

√
2 is an irrational.

Since we did not really define N and Z, we must make certain assumptions
about them. If you are interested in the definitions and proofs, see Appendix A.

1.1 Remark. We will assume that the sets N and Z satisfy the following
properties.

i) If n,m ∈ Z, then n + m, n − m, and mn belong to Z.
ii) If n ∈ Z, then n ∈ N if and only if n ≥ 1.

iii) There is no n ∈ Z that satisfies 0 < n < 1.

Using these properties, we can prove that Q satisfies Postulate 1 (see Exer-
cise 1.2.9).

We notice in passing that none of the other special subsets of R satisfies Postu-
late 1. N satisfies all but three of the properties in Postulate 1: N has no additive
identity (since 0 /∈ N), N has no additive inverses (e.g., −1 /∈ N), and only one
of the nonzero elements of N (namely, 1) has a multiplicative inverse. Z sat-
isfies all but one of the properties in Postulate 1: Only two nonzero elements
of Z have multiplicative inverses (namely, 1 and −1). Qc satisfies all but four
of the properties in Postulate 1: Qc does not have an additive identity (since
0 /∈ R \ Q), does not have a multiplicative identity (since 1 /∈ R \ Q), and does
not satisfy either closure property. Indeed, since

√
2 is irrational, the sum of

irrationals may be rational (
√

2+(−√
2) = 0) and the product of irrationals may

be rational (
√

2 · √
2 = 2).

Notice that any subset of R satisfies Postulate 2. Thus Q satisfies both Pos-
tulates 1 and 2. The remaining postulate, introduced in Section 1.3, identifies a
property that Q does not possess. In particular, Postulates 1 through 3 distin-
guish R from each of its special subsets N, Z, Q, and Qc. These postulates actu-
ally characterize R; that is, R is the only set that satisfies Postulates 1 through 3.
(Such a set is called a complete Archimedean ordered field. We may as well
admit a certain arbitrariness in choosing this approach. R has been developed
axiomatically in at least five other ways [e.g., as a one-dimensional continuum
or as a set of binary decimals with certain arithmetic operations]. The decision
to present R using Postulates 1 through 3 is based partly on economy and partly
on personal taste.)

Postulates 1 and 2 can be used to derive all identities and inequalities which
are true for real numbers [e.g., see implications (5) through (9) below]. Since
arguments based on inequalities are of fundamental importance to analysis, we
begin to supply details of proofs at this stage.

What is a proof? Every mathematical result (for us this includes examples,
remarks, lemmas, and theorems) has hypotheses and a conclusion. There are
three main methods of proof: mathematical induction, direct deduction, and
contradiction.

8



Section 1.2 Ordered Field Axioms 9

Mathematical induction, a special method for proving statements that depend
on positive integers, will be covered in Section 1.4.

To construct a deductive proof, we assume the hypotheses to be true and pro-
ceed step by step to the conclusion. Each step is justified by a hypothesis, a
definition, a postulate, or a mathematical result that has already been proved.
(Actually, this is usually the way we write a proof. When constructing your own
proofs, you may find it helpful to work forward from the hypotheses as far as
you can and then work backward from the conclusion, trying to meet in the
middle.)

To construct a proof by contradiction, we assume the hypotheses to be true,
the conclusion to be false, and work step by step deductively until a contra-
diction occurs; that is, a statement that is obviously false or that is contrary to
the assumptions made. At this point the proof by contradiction is complete. The
phrase “suppose to the contrary” always indicates a proof by contradiction (e.g.,
see the proof of Theorem 1.9).

What about false statements? How do we “prove” that a statement is false?
We can show that a statement is false by producing a single, concrete example
(called a counterexample) that satisfies the hypotheses but not the conclusion
of that statement. For example, to show that the statement “x > 1 implies
x2 − x − 2 �= 0” is false, we need only observe that x = 2 is greater than 1 but
22 − 2 − 2 = 0.

Here are some examples of deductive proofs. (Note: The symbol � indicates
that the proof or solution is complete.)

1.2 EXAMPLE.

If a ∈ R, prove that

a �= 0 implies a2 > 0. (5)

In particular, −1 < 0 < 1.

Proof. Suppose that a �= 0. By the Trichotomy Property, either a > 0 or
a < 0.

Case 1. a > 0. Multiply both sides of this inequality by a, using the First
Multiplicative Property. We obtain a2 = a · a > 0 · a. Since (by (2)), 0 · a = 0
we conclude that a2 > 0.

Case 2. a < 0. Multiply both sides of this inequality by a. Since a < 0, it
follows from the Second Multiplicative Property that a2 = a · a > 0 · a = 0.
This proves that a2 > 0 when a �= 0.

Since 1 �= 0, it follows that 1 = 12 > 0. Adding −1 to both sides of this
inequality, we conclude that 0 = 1 − 1 > 0 − 1 = −1. �

1.3 EXAMPLE.

If a ∈ R, prove that

0 < a < 1 implies 0 < a2 < a and a > 1 implies a2 > a. (6)

9



10 Chapter 1 The Real Number System

Proof. Suppose that 0 < a < 1. Multiply both sides of this inequality by a
using the First Multiplicative Property. We obtain 0 = 0 · a < a2 < 1 · a = a.
In particular, 0 < a2 < a.

On the other hand, if a > 1, then a > 0 by Example 1.2 and the Transitive
Property. Multiplying a > 1 by a, we conclude that a2 = a · a > 1 · a = a. �

Similarly (see Exercise 1.2.2), we can prove that

0 ≤ a < b and 0 ≤ c < d imply ac < bd, (7)

0 ≤ a < b implies 0 ≤ a2 < b2 and 0 ≤ √
a <

√
b, (8)

and

0 < a < b implies
1

a
>

1

b
> 0. (9)

Much of analysis deals with estimation (of error, of growth, of volume, etc.)
in which these inequalities and the following concept play a central role.

1.4 Definition.

The absolute value of a number a ∈ R is the number

|a| :=
{

a a ≥ 0
−a a < 0.

When proving results about the absolute value, we can always break the proof
up into several cases, depending on when the parameters are positive, negative,
or zero. Here is a typical example.

1.5 Remark. The absolute value is multiplicative; that is, |ab| = |a| |b| for all
a, b ∈ R.

Proof. We consider four cases.
Case 1. a = 0 or b = 0. Then ab = 0, so by definition, |ab| = 0 = |a| |b|.
Case 2. a > 0 and b > 0. By the First Multiplicative Property, ab > 0·b = 0.

Hence by definition, |ab| = ab = |a| |b|.
Case 3. a > 0 and b < 0, or, b > 0 and a < 0. By symmetry, we may

suppose that a > 0 and b < 0. (That is, if we can prove it for a > 0 and b < 0,
then by reversing the roles of a and b, we can prove it for a < 0 and b > 0.)
By the Second Multiplicative Property, ab < 0. Hence by Definition 1.4, (2),
associativity, and commutativity,

|ab| = −(ab) = (−1)(ab) = a((−1)b) = a(−b) = |a| |b|.

10
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Case 4. a < 0 and b < 0. By the Second Multiplicative Property, ab > 0.
Hence by Definition 1.4,

|ab| = ab = (−1)2(ab) = (−a)(−b) = |a| |b|. �

We shall soon see that there are more efficient ways to prove results about
absolute values than breaking the argument into cases.

The following result is useful when solving inequalities involving absolute
value signs.

1.6 Theorem. [FUNDAMENTAL THEOREM OF ABSOLUTE VALUES].
Let a ∈ R and M ≥ 0. Then |a| ≤ M if and only if −M ≤ a ≤ M .

Proof. Suppose first that |a| ≤ M . Multiplying by –1, we also have −|a|≥−M .
Case 1. a ≥ 0. By Definition 1.4, |a| = a. Thus by hypothesis,

−M ≤ 0 ≤ a = |a| ≤ M.

Case 2. a < 0. By Definition 1.4, |a| = −a. Thus by hypothesis,

−M ≤ −|a| = a < 0 ≤ M.

This proves that −M ≤ a ≤ M in either case.
Conversely, if −M ≤ a ≤ M , then a ≤ M and −M ≤ a. Multiplying the

second inequality by −1, we have −a ≤ M . Consequently, |a| = a ≤ M if
a ≥ 0, and |a| = −a ≤ M if a < 0. �

NOTE: In a similar way we can prove that |a| < M if and only if −M < a < M .

Here is another useful result about absolute values.

1.7 Theorem. The absolute value satisfies the following three properties.

i) [Positive Definite] For all a ∈ R, |a| ≥ 0 with |a| = 0 if and only if a = 0.
ii) [Symmetric] For all a, b ∈ R, |a − b| = |b − a|.

iii) [Triangle Inequalities] For all a, b ∈ R,

|a + b| ≤ |a| + |b| and
∣∣ |a| − |b| ∣∣≤ |a − b|.

Proof. i) If a ≥ 0, then |a| = a ≥ 0. If a < 0, then by Definition 1.4 and the
Second Multiplicative Property, |a| = −a = (−1)a > 0. Thus |a| ≥ 0 for all
a ∈ R.

If |a| = 0, then by definition a = |a| = 0 when a ≥ 0 and a = −|a| = 0
when a < 0. Thus |a| = 0 implies that a = 0. Conversely, |0| = 0 by definition.

ii) By Remark 1.5, |a − b| = | − 1| |b − a| = |b − a|.

11



12 Chapter 1 The Real Number System

iii) To prove the first inequality, notice that |x | ≤ |x | holds for any x ∈ R.
Thus Theorem 1.6 implies that −|a| ≤ a ≤ |a| and −|b| ≤ b ≤ |b|. Adding
these inequalities (see Exercise 1.2.1), we obtain

−(|a| + |b|) ≤ a + b ≤ |a| + |b|.
Hence by Theorem 1.6 again, |a + b| ≤ |a| + |b|.

To prove the second inequality, apply the first inequality to (a − b)+ b. We
obtain

|a| − |b| = |a − b + b| − |b| ≤ |a − b| + |b| − |b| = |a − b|.
By reversing the roles of a and b and applying part ii), we also obtain

|b| − |a| ≤ |b − a| = |a − b|.
Multiplying this last inequality by −1 and combining it with the preceding one
verifies

−|a − b| ≤ |a| − |b| ≤ |a − b|.
We conclude by Theorem 1.6 that

∣∣ |a| − |b| ∣∣ ≤ |a − b|. �

Notice once and for all that this last inequality implies that |a| − |b| ≤ |a − b|
for all a, b ∈ R. We will use this inequality several times.

WARNING. Some students mistakenly mix absolute values and the Additive
Property to conclude that b < c implies |a + b| < |a + c|. It is important from the
beginning to recognize that this implication is false unless both a + b and a + c
are nonnegative. For example, if a = 1, b = −5, and c = −1, then b < c but
|a + b| = 4 is not less than |a + c| = 0.

A correct way to estimate using absolute value signs usually involves one of
the triangle inequalities.

1.8 EXAMPLE.

Prove that if −2 < x < 1, then |x2 − x | < 6.

Proof. By hypothesis, |x | < 2. Hence by the triangle inequality and
Remark 1.5,

|x2 − x | ≤ |x |2 + |x | < 4 + 2 = 6. �

The following result (which is equivalent to the Trichotomy Property) will be
used many times in this and subsequent chapters.

1.9 Theorem. Let x, y, a ∈ R.
i) x < y + ε for all ε > 0 if and only if x ≤ y.

ii) x > y − ε for all ε > 0 if and only if x ≥ y.
iii) |a| < ε for all ε > 0 if and only if a = 0.

12



Section 1.2 Ordered Field Axioms 13

Proof. i) Suppose to the contrary that x < y + ε for all ε > 0 but x > y.
Set ε0 = x − y > 0 and observe that y + ε0 = x . Hence by the Trichotomy
Property, y + ε0 cannot be greater than x . This contradicts the hypothesis for
ε = ε0. Thus x ≤ y.

Conversely, suppose that x ≤ y and ε > 0 is given. Either x < y or x = y.
If x < y, then x +0 < y +0 < y + ε by the Additive and Transitive Properties.
If x = y, then x < y + ε by the Additive Property. Thus x < y + ε for all ε > 0
in either case. This completes the proof of part i).

ii) Suppose that x > y − ε for all ε > 0. By the Second Multiplicative
Property, this is equivalent to −x < −y + ε, hence by part i), equivalent to
−x ≤ −y. By the Second Multiplicative Property, this is equivalent to x ≥ y.

iii) Suppose that |a| < ε = 0 + ε for all ε > 0. By part i), this is equivalent to
|a| ≤ 0. Since it is always the case that |a| ≥ 0, we conclude by the Trichotomy
Property that |a| = 0. Therefore, a = 0 by Theorem 1.7i. �

Let a and b be real numbers. A closed interval is a set of the form

[a, b] := {x ∈ R : a ≤ x ≤ b}, [a,∞) := {x ∈ R : a ≤ x},
(−∞, b] := {x ∈ R : x ≤ b}, or (−∞,∞) := R,

and an open interval is a set of the form

(a, b) := {x ∈ R : a < x < b}, (a,∞) := {x ∈ R : a < x},
(−∞, b) := {x ∈ R : x < b}, or (−∞,∞) := R.

By an interval we mean a closed interval, an open interval, or a set of the form

[a, b) := {x ∈ R : a ≤ x < b} or (a, b] := {x ∈ R : a < x ≤ b}.

Notice, then, that when a < b, the intervals [a, b], [a, b), (a, b], and (a, b) cor-
respond to line segments on the real line, but when b < a, these “intervals” are
all the empty set.

An interval I is said to be bounded if and only if it has the form [a, b], (a, b),
[a, b), or (a, b] for some −∞ < a ≤ b < ∞, in which case the numbers a, b
will be called the endpoints of I . All other intervals will be called unbounded.
An interval with endpoints a, b is called degenerate if a = b and nondegenerate
if a < b. Thus a degenerate open interval is the empty set, and a degenerate
closed interval is a point.

Analysis has a strong geometric flavor. Geometry enters the picture because
the real number system can be identified with the real line in such a way that
a < b if and only if a lies to the left of b (see Figures 1.2, 2.1, and 2.2). This
gives us a way of translating analytic results on R into geometric results on the
number line, and vice versa. We close with several examples.

The absolute value is closely linked to the idea of length. The length of a
bounded interval I with endpoints a, b is defined to be |I | := |b − a|, and the
distance between any two points a, b ∈ R is defined by |a − b|.

13



14 Chapter 1 The Real Number System

Inequalities can be interpreted as statements about intervals. By Theorem 1.6,
|a| ≤ M if and only if a belongs to the closed interval [−M,M]; and by Theo-
rem 1.9, a belongs to the open interval (−ε, ε) for all ε > 0 if and only if a = 0.

We will use this point of view in Chapters 2 through 5 to give geomet-
ric interpretations to the calculus of functions defined on R, and in Chap-
ters 11 through 13 to extend this calculus to functions defined on the Euclidean
spaces Rn .

EXERCISES

In each of the following exercises, verify the given statement carefully, proceeding
step by step. Validate each step that involves an inequality by using some statement
found in this section.

1.2.0 Let a, b, c, d ∈ R and consider each of the following statements. Decide
which are true and which are false. Prove the true ones and give coun-
terexamples to the false ones.

a) If a < b and c < d < 0, then ac > bd.
b) If a ≤ b and c > 1, then |a + c| ≤ |b + c|.
c) If a ≤ b and b ≤ a + c, then |a − b| ≤ c.
d) If a < b − ε for all ε > 0, then a < 0.

1.2.1. Suppose that a, b, c ∈ R and a ≤ b.

a) Prove that a + c ≤ b + c.
b) If c ≥ 0, prove that a · c ≤ b · c.

1.2.2. Prove (7), (8), and (9). Show that each of these statements is false if the
hypothesis a ≥ 0 or a > 0 is removed.

1.2.3. This exercise is used in Section 6.3. The positive part of an a ∈ R is
defined by

a+ := |a| + a

2
and the negative part by

a− := |a| − a

2
.

a) Prove that a = a+ − a− and |a| = a+ + a−.
b) Prove that

a+ =
{

a a ≥ 0
0 a ≤ 0

and a− =
{

0 a ≥ 0
−a a ≤ 0.

1.2.4. Solve each of the following inequalities for x ∈ R.

a) |2x + 1| < 7
b) |2 − x | < 2

14



Section 1.2 Ordered Field Axioms 15

c) |x3 − 3x + 1| < x3

d)
x

x − 1
< 1

e)
x2

4x2 − 1
<

1

4

1.2.5. Let a, b ∈ R.

a) Prove that if a > 2 and b = 1 + √
a − 1, then 2 < b < a.

b) Prove that if 2 < a < 3 and b = 2 + √
a − 2, then 0 < a < b.

c) Prove that if 0 < a < 1 and b = 1 − √
1 − a, then 0 < b < a.

d) Prove that if 3 < a < 5 and b = 2 + √
a − 2, then 3 < b < a.

1.2.6. The arithmetic mean of a, b ∈ R is A(a, b) = (a+b)/2, and the geometric
mean of a, b ∈ [0,∞) is G(a, b) = √

ab. If 0 ≤ a ≤ b, prove that
a ≤ G(a, b) ≤ A(a, b) ≤ b. Prove that G(a, b) = A(a, b) if and only if
a = b.

1.2.7. Let x ∈ R.

a) Prove that |x | ≤ 2 implies |x2 − 4| ≤ 4|x − 2|.
b) Prove that |x | ≤ 1 implies |x2 + 2x − 3| ≤ 4|x − 1|.
c) Prove that −3 ≤ x ≤ 2 implies |x2 + x − 6| ≤ 6|x − 2|.
d) Prove that −1 < x < 0 implies |x3 − 2x + 1| < 1.26|x − 1|.

1.2.8. For each of the following, find all values of n ∈ N that satisfy the given
inequality.

a)
1 − n

1 − n2
< 0.01

b)
n2 + 2n + 3

2n3 + 5n2 + 8n + 3
< 0.025

c)
n − 1

n3 − n2 + n − 1
< 0.002

1.2.9. a) Interpreting a rational m/n as m · n−1 ∈ R, use Postulate 1 to
prove that

m

n
+ p

q
= mq + np

nq
,

m

n
· p

q
= mp

nq
, −m

n
= −m

n
, and

(
�

n

)−1

= n

�

for m, n, p, q, � ∈ Z and n, q, � �= 0.
b) Using Remark 1.1, Prove that Postulate 1 holds with Q in place of R.
c) Prove that the sum of a rational and an irrational is always irrational.

What can you say about the product of a rational and an irrational?
d) Let m/n, p/q ∈ R with n, q > 0. Prove that

m

n
<

p

q
if and only if mq < np.

(Restricting this observation to Q gives a definition of “<” on Q.)

15



16 Chapter 1 The Real Number System

1.2.10. Prove that

(ab + cd)2 ≤ (a2 + c2)(b2 + d2)

for all a, b, c, d ∈ R.

1.2.11. a) Let R+ represent the collection of positive real numbers. Prove that
R+ satisfies the following two properties.
i) For each x ∈ R, one and only one of the following holds:

x ∈ R+, −x ∈ R+, or x = 0.

ii) Given x, y ∈ R+, both x + y and x · y belong to R+.
b) Suppose that R contains a subset R+ (not necessarily the set of pos-

itive numbers) which satisfies properties i) and ii). Define x ≺ y by
y − x ∈ R+. Prove that Postulate 2 holds with ≺ in place of <.

1.3 COMPLETENESS AXIOM

In this section we introduce the last of three postulates that describe R. To
formulate this postulate, which distinguishes Q from R, we need the following
concepts.

1.10 Definition.

Let E ⊂ R be nonempty.

i) The set E is said to be bounded above if and only if there is an M ∈ R such
that a ≤ M for all a ∈ E , in which case M is called an upper bound of E .

ii) A number s is called a supremum of the set E if and only if s is an upper
bound of E and s ≤ M for all upper bounds M of E . (In this case we shall
say that E has a finite supremum s and write s = sup E .)

NOTE: Because French mathematicians (e.g., Borel, Jordan, and Lebesgue)
did fundamental work on the connection between analysis and set theory, and
ensemble is French for set, analysts frequently use E to represent a general set.

By Definition 1.10ii, a supremum of a set E (when it exists) is the smallest (or
least) upper bound of E . By definition, then, in order to prove that s = sup E
for some set E ⊂ R, we must show two things: s is an upper bound, AND s is
the smallest upper bound. Here is a typical example.

1.11 EXAMPLE.

If E = [0, 1], prove that sup E = 1.

Proof. By the definition of interval, 1 is an upper bound of E . Let M be any
upper bound of E ; that is, M ≥ x for all x ∈ E . Since 1 ∈ E , it follows that
M ≥ 1. Thus 1 is the smallest upper bound of E . �

16



Section 1.3 Completeness Axiom 17

The following two remarks answer the question: How many upper bounds
and suprema can a given set have?

1.12 Remark. If a set has one upper bound, it has infinitely many upper bounds.

Proof. If M0 is an upper bound for a set E , then so is M for any M > M0. �

1.13 Remark. If a set has a supremum, then it has only one supremum.

Proof. Let s1 and s2 be suprema of the same set E . Then both s1 and s2 are
upper bounds of E , whence by Definition 1.10ii, s1 ≤ s2 and s2 ≤ s1. We
conclude by the Trichotomy Property that s1 = s2. �

NOTE: This proof illustrates a general principle. When asked to prove a = b, it
is often easier to verify that a ≤ b and b ≤ a separately.

The next result, a fundamental property of suprema, shows that the supremum
of a set E can be approximated by a point in E (see Figure 1.3 for an illustration).

1–
8

1–
4

1–
2

1

0

0. . .

1–
2

2–
3

3–
4

1

points in A

points in B

. . .

FIGURE 1.3

1.14 Theorem. [APPROXIMATION PROPERTY FOR SUPREMA].
If E has a finite supremum and ε > 0 is any positive number, then there is a
point a ∈ E such that

sup E − ε < a ≤ sup E .

Proof. Suppose that the theorem is false. Then there is an ε0 > 0 such that no
element of E lies between s0 := sup E − ε0 and sup E . Since sup E is an upper
bound for E , it follows that a ≤ s0 for all a ∈ E ; that is, s0 is an upper bound
of E . Thus, by Definition 1.10ii, sup E ≤ s0 = sup E − ε0. Adding ε0 − sup E
to both sides of this inequality, we conclude that ε0 ≤ 0, a contradiction. �

The Approximation Property can be used to show that the supremum of any
subset of integers is itself an integer.

17



18 Chapter 1 The Real Number System

1.15 Theorem. If E ⊂ Z has a supremum, then sup E ∈ E . In particular, if the
supremum of a set, which contains only integers, exists, that supremum must be
an integer.

Proof. Suppose that s := sup E and apply the Approximation Property to
choose an x0 ∈ E such that s − 1 < x0 ≤ s. If s = x0, then s ∈ E , as promised.
Otherwise, s − 1 < x0 < s and we can apply the Approximation Property
again to choose x1 ∈ E such that x0 < x1 < s.

Subtract x0 from this last inequality to obtain 0 < x1 − x0 < s − x0. Since
−x0 < 1−s, it follows that 0 < x1−x0 < s+(1−s) = 1. Thus x1−x0 ∈ Z∩(0, 1),
a contradiction by Remark 1.1iii. We conclude that s ∈ E . �

The existence of suprema is the last assumption about R we make.

Postulate 3. [COMPLETENESS AXIOM]. If E is a nonempty subset of R that
is bounded above, then E has a finite supremum.

We shall use Completeness Axiom many times. Our first two applications deal
with the distribution of integers (Theorem 1.16) and rationals (Theorem 1.18)
among real numbers.

1.16 Theorem. [ARCHIMEDEAN PRINCIPLE].
Given real numbers a and b, with a > 0, there is an integer n ∈ N such that
b < na.

Strategy: The idea behind the proof is simple. By the Completeness Axiom
and Theorem 1.15, any nonempty subset of integers that is bounded above has
a “largest” integer. If k0 is the largest integer that satisfies k0a ≤ b, then n =
(k0 + 1) (which is larger than k0) must satisfy na > b. In order to justify this
application of the Completeness Axiom, we have two details to attend to: (1) Is
the set E := {k ∈ N : ka ≤ b} bounded above? (2) Is E nonempty? The
answer to the second question depends on whether b < a or not. Here are the
details.

Proof. If b < a, set n = 1. If a ≤ b, consider the set E = {k ∈ N : ka ≤ b}. E is
nonempty since 1 ∈ E . Let k ∈ E (i.e., ka ≤ b). Since a > 0, it follows from
the First Multiplicative Property that k ≤ b/a. This proves that E is bounded
above by b/a. Thus, by the Completeness Axiom and Theorem 1.15, E has a
finite supremum s that belongs to E , in particular, s ∈ N.

Set n = s + 1. Then n ∈ N and (since n is larger than s), n cannot belong to
E . Thus na > b. �

Notice in Example 1.11 and Theorem 1.15 that the supremum of E belonged
to E . The following result shows that this is not always the case.

1.17 EXAMPLE.

Let A = {1, 1
2 ,

1
4 ,

1
8 , . . .} and B = { 1

2 ,
2
3 ,

3
4 , . . .}. Prove that sup A = sup B = 1.

18



Section 1.3 Completeness Axiom 19

Proof. It is clear that 1 is an upper bound of both sets. It remains to see that
1 is the smallest upper bound of both sets. For A, this is trivial. Indeed, if
M is any upper bound of A, then M ≥ 1 (since 1 ∈ A). On the other hand,
if M is an upper bound for B, but M < 1, then 1 − M > 0. In particular,
1/(1 − M) ∈ R.

Choose, by the Archimedean Principle, an n ∈ N such that n > 1/(1−M). It
follows (do the algebra) that x0 := 1−1/n > M . Since x0 ∈ B, this contradicts
the assumption that M is an upper bound of B (see Figure 1.3). �

The next proof shows how the Archimedean Principle is used to establish
scale.

1.18 Theorem. [DENSITY OF RATIONALS].
If a, b ∈ R satisfy a < b, then there is a q ∈ Q such that a < q < b.

Strategy: To find a fraction q = m/n such that a < q < b, we must specify
both numerator m and denominator n. Let’s suppose first that a > 0 and that
the set E := {k ∈ N : k/n ≤ a} has a supremum, k0. Then m := k0 + 1, being
greater than the supremum of E , cannot belong to E . Thus m/n > a. Is this the
fraction we look for? Is m/n < b? Not unless n is large enough. To see this, look
at a concrete example: a = 2/3 and b = 1. If n = 1, then E has no supremum,
When n = 2, k0 = 1 and when n = 3, k0 = 2. In both cases (k0 + 1)/n = 1 is
too big. However, when n = 4, k0 = 2 so (k0 + 1)/4 = 3/4 is smaller than b, as
required.

How can we prove that for each fixed a < b there always is an n large enough
so that if k0 is chosen as above, then (k0 +1)/n < b? By the choice of k0, k0/n ≤
a. Let’s look at the worst case scenario: a = k0/n. Then b > (k0 + 1)/n means

b >
k0 + 1

n
= k0

n
+ 1

n
= a + 1

n

(i.e., b − a > 1/n). Such an n can always be chosen by the Archimedean Princi-
ple.

What about the assumption that sup E exists? This requires that E be
nonempty and bounded above. Once n is fixed, E will be bounded above by
na. But the only way that E is nonempty is that at the very least, 1 ∈ E (i.e., that
1/n ≤ a). This requires a second restriction on n. We begin our formal proof at
this point.

Proof. Suppose first that a > 0. Since b − a > 0, use the Archimedean
Principle to choose an n ∈ N that satisfies

n > max

{
1

a
,

1

b − a

}
,

and observe that both 1/n < a and 1/n < b − a.
Consider the set E = {k ∈ N : k/n ≤ a}. Since 1 ∈ E, E is nonempty. Since

n > 0, E is bounded above by na. Hence, by Theorem 1.15, k0 := sup E exists

19



20 Chapter 1 The Real Number System

and belongs to E , in particular, to N. Set m = k0 + 1 and q = m/n. Since k0 is
the supremum of E, m /∈ E . Thus q > a. On the other hand, since k0 ∈ E , it
follows from the choice of n that

b = a + (b − a) ≥ k0

n
+ (b − a) >

k0

n
+ 1

n
= m

n
= q.

Now suppose that a ≤ 0. Choose, by the Archimedean Principle, an integer
k ∈ N such that k > −a. Then 0 < k + a < k + b, and by the case already
proved, there is an r ∈ Q such that k + a < r < k + b. Therefore, q := r − k
belongs to Q and satisfies the inequality a < q < b. �

For some applications, we also need the following concepts.

1.19 Definition.

Let E ⊂ R be nonempty.

i) The set E is said to be bounded below if and only if there is an m ∈ R such
that a ≥ m for all a ∈ E , in which case m is called a lower bound of the
set E .

ii) A number t is called an infimum of the set E if and only if t is a lower
bound of E and t ≥ m for all lower bounds m of E . In this case we shall say
that E has an infimum t and write t = inf E .

iii) E is said to be bounded if and only if it is bounded both above and below.

When a set E contains its supremum (respectively, its infimum) we shall fre-
quently write max E for sup E (respectively, min E for inf E).

(Some authors call the supremum the least upper bound and the infimum the
greatest lower bound. We will not use this terminology because it is somewhat
old fashioned and because it confuses some students, since the least upper bound
of a given set is always greater than or equal to the greatest lower bound.)

To relate suprema to infima, we define the reflection of a set E ⊆ R by

−E := {x : x = −a for some a ∈ E }.

For example, −(1, 2] = [−2,−1).
The following result shows that the supremum of a set is the same as the

negative of its reflection’s infimum. This can be used to prove an Approximation
Property and a Completeness Property for Infima (see Exercise 1.3.6).

1.20 Theorem. [REFLECTION PRINCIPLE].
Let E ⊆ R be nonempty.
i) E has a supremum if and only if −E has an infimum, in which case

inf(−E) = − sup E .

20



Section 1.3 Completeness Axiom 21

ii) E has an infimum if and only if −E has a supremum, in which case

sup(−E) = − inf E .

Proof. The proofs of these statements are similar. We prove only the first
statement.

Suppose that E has a supremum s and set t = −s. Since s is an upper bound
for E, s ≥ a for all a ∈ E , so −s ≤ −a for all a ∈ E . Therefore, t is a lower
bound of −E . Suppose that m is any lower bound of −E . Then m ≤ −a for
all a ∈ E , so −m is an upper bound of E . Since s is the supremum of E , it
follows that s ≤ −m (i.e., t = −s ≥ m). Thus t is the infimum of −E and
sup E = s = −t = − inf(−E).

Conversely, suppose that −E has an infimum t . By definition, t ≤ −a for
all a ∈ E . Thus −t is an upper bound for E . Since E is nonempty, E has a
supremum by the Completeness Axiom. �

Theorem 1.20 allows us to obtain information about infima from results about
suprema, and vice versa (see the proof of the next theorem).

We shall use the following result many times.

1.21 Theorem. [MONOTONE PROPERTY].
Suppose that A ⊆ B are nonempty subsets of R.
i) If B has a supremum, then sup A ≤ sup B.

ii) If B has an infimum, then inf A ≥ inf B.

Proof. i) Since A ⊆ B, any upper bound of B is an upper bound of A. There-
fore, sup B is an upper bound of A. It follows from the Completeness Axiom
that sup A exists, and from Definition 1.10ii that sup A ≤ sup B.

ii) Clearly, −A ⊆ −B. Thus by part i), Theorem 1.20, and the Second
Multiplicative Property,

inf A = − sup(−A) ≥ − sup(−B) = inf B. �

It is convenient to extend the definition of suprema and infima to all subsets
of R. To do this we expand the definition of R as follows. The set of extended real
numbers is defined to be R := R

⋃{±∞}. Thus x is an extended real number if
and only if either x ∈ R, x = +∞, or x = −∞.

Let E ⊆ R be nonempty. We shall define sup E = +∞ if E is unbounded
above and inf E = −∞ if E is unbounded below. Finally, we define sup ∅ = −∞
and inf ∅ = +∞. Notice, then, that the supremum of a subset E of R (respec-
tively, the infimum of E) is finite if and only if E is nonempty and bounded
above (respectively, nonempty and bounded below). Moreover, under the con-
vention −∞ < a and a < ∞ for all a ∈ R, the Monotone Property still holds
for this extended definition; that is, if A and B are subsets of R and A ⊆ B, then
sup A ≤ sup B and inf A ≥ inf B, provided we use the convention that −∞ < ∞.
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EXERCISES

1.3.0. Decide which of the following statements are true and which are false.
Prove the true ones and give counterexamples to the false ones.

a) If A and B are nonempty, bounded subsets of R, then sup(A ∩ B) ≤
sup A.

b) Let ε be a positive real number. If A is a nonempty, bounded subset
of R and B = {εx : x ∈ A}, then sup(B) = ε sup(A).

c) If A + B := {a + b : a ∈ A and b ∈ B}, where A and B are nonempty,
bounded subsets of R, then sup(A + B) = sup(A)+ sup(B).

d) If A − B := {a − b : a ∈ A and b ∈ B}, where A and B are nonempty,
bounded subsets of R, then sup(A − B) = sup(A)− sup(B)

1.3.1. Find the infimum and supremum of each of the following sets.

a) E = {x ∈ R : x2 + 2x = 3}
b) E = {x ∈ R : x2 − 2x + 3 > x2 and x > 0}
c) E = {p/q ∈ Q : p2 < 5q2 and p, q > 0}
d) E = {x ∈ R : x = 1 + (−1)n/n for n ∈ N}
e) E = {x ∈ R : x = 1/n + (−1)n for n ∈ N}
f) E = {2 − (−1)n/n2 : n ∈ N}

1.3.2. Prove that for each a ∈ R and each n ∈ N there exists a rational rn such
that |a − rn| < 1/n.

1.3.3 . [Density of Irrationals] This exercise is used in Section 3.3. Prove
that if a < b are real numbers, then there is an irrational ξ ∈ R such that
a < ξ < b.

1.3.4. Prove that a lower bound of a set need not be unique but the infimum
of a given set E is unique.

1.3.5. Show that if E is a nonempty bounded subset of Z, then inf E exists and
belongs to E .

1.3.6 . This exercise is used in many sections, including 2.2 and 5.1. Use the
Reflection Principle and analogous results about suprema to prove the
following results.

a) [Approximation Property for Infima] Prove that if a set E ⊂ R has
a finite infimum and ε > 0 is any positive number, then there is a
point a ∈ E such that inf E + ε > a ≥ inf E .

b) [Completeness Property for Infima] If E ⊆ R is nonempty and
bounded below, then E has a (finite) infimum.

1.3.7. a) Prove that if x is an upper bound of a set E ⊆ R and x ∈ E , then x is
the supremum of E .

b) Make and prove an analogous statement for the infimum of E .
c) Show by example that the converse of each of these statements is

false.

1.3.8. Suppose that E, A, B ⊂ R and E = A ∪ B. Prove that if E has a supre-
mum and both A and B are nonempty, then sup A and sup B both exist,
and sup E is one of the numbers sup A or sup B.
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1.3.9. A dyadic rational is a number of the form k/2n for some k, n ∈ Z. Prove
that if a and b are real numbers and a < b, then there exists a dyadic
rational q such that a < q < b.

1.3.10. Let xn ∈ R and suppose that there is an M ∈ R such that |xn| ≤ M
for n ∈ N. Prove that sn = sup{xn, xn+1, . . .} defines a real number for
each n ∈ N and that s1 ≥ s2 ≥ · · · . Prove an analogous result about
tn = inf{xn, xn+1, . . .}.

1.3.11. If a, b ∈ R and b − a > 1, then there is at least one k ∈ Z such that
a < k < b.

1.4 MATHEMATICAL INDUCTION

In this section we introduce the method of Mathematical Induction and use it
to prove the Binomial Formula, a result that shows how to expand powers of a
binomial expression (i.e., an expression of the form a + b).

We begin by obtaining another consequence of the Completeness Axiom,
the Well-Ordering Principle, which is a statement about the existence of least
elements of subsets of N.

1.22 Theorem. [WELL-ORDERING PRINCIPLE].
If E is a nonempty subset of N, then E has a least element (i.e., E has a finite
infimum and inf E ∈ E).

Proof. Suppose that E ⊆ N is nonempty. Then −E is bounded above, by
−1, so by the Completeness Axiom sup(−E) exists, and by Theorem 1.15,
sup(−E) ∈ −E . Hence by Theorem 1.20, inf E = − sup(−E) exists, and
inf E ∈ −(−E) = E . �

Our first application of the Well-Ordering Principle is called the Principle of
Mathematical Induction or the Axiom of Induction (which, under mild assump-
tions, is equivalent to the Well-Ordering Principle—see Appendix A).

1.23 Theorem. Suppose for each n ∈ N that A(n) is a proposition (i.e., a verbal
statement or formula) which satisfies the following two properties:

i) A(1) is true.
ii) For every n ∈ N for which A(n) is true, A(n + 1) is also true.

Then A(n) is true for all n ∈ N.

Proof. Suppose that the theorem is false. Then the set E = {n ∈ N : A(n)
is false} is nonempty. Hence by the Well-Ordering Principle, E has a least
element, say x .

Since x ∈ E ⊆ N ⊂ Z, we have by Remark 1.1ii that x ≥ 1. Since x ∈ E ,
we have by hypothesis i) that x �= 1. In particular, x − 1 > 0. Hence, by
Remark 1.1i and iii, x − 1 ≥ 1 and x − 1 ∈ N.

Since x − 1 < x and x is a least element of E , the statement A(x − 1) must
be true. Applying hypothesis ii) to n = x − 1, we see that A(x) = A(n + 1)
must also be true; that is, x /∈ E , a contradiction. �
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24 Chapter 1 The Real Number System

Recall that if x0, x1, . . . , xn are real numbers and 0 ≤ j ≤ n, then

n∑
k= j

xk := x j + x j+1 + · · · + xn

denotes the sum of the xk ’s as k ranges from j to n. The following examples
illustrate the fact that the Principle of Mathematical Induction can be used to
prove a variety of statements involving integers.

1.24 EXAMPLE.

Prove that
n∑

k=1

(3k − 1)(3k + 2) = 3n3 + 6n2 + n

for n ∈ N.

Proof. Let A(n) represent the statement

n∑
k=1

(3k − 1)(3k + 2) = 3n3 + 6n2 + n.

For n = 1 the left side of this equation is 2 · 5 and the right side is 3 + 6 + 1.
Therefore, A(1) is true. Suppose that A(n) is true for some n ≥ 1. Then

n+1∑
k=1

(3k − 1)(3k + 2) = (3n + 2)(3n + 5)+
n∑

k=1

(3k − 1)(3k + 2)

= (3n + 2)(3n + 5)+ 3n3+ 6n2+ n

= 3n3 + 15n2+ 22n +10.

On the other hand, a direct calculation reveals that

3(n + 1)3 + 6(n + 1)2 + (n + 1) = 3n3 + 15n2 + 22n + 10.

Therefore, A(n + 1) is true when A(n) is. We conclude by induction that A(n)
holds for all n ∈ N. �

Two formulas encountered early in an algebra course are the perfect square
and cube formulas:

(a + b)2 = a2 + 2ab + b2 and (a + b)3 = a3 + 3a2b + 3ab2 + b3.

Our next application of the Principle of Mathematical Induction generalizes
these formulas from n = 2 and 3 to arbitrary n ∈ N.
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Recall that Pascal’s triangle is the triangular array of integers whose rows
begin and end with 1s with the property that an interior entry on any row is
obtained by adding the two numbers in the preceding row immediately above
that entry. Thus the first few rows of Pascal’s triangle are as below.

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

Notice that the third and fourth rows are precisely the coefficients that appeared
in the perfect square and cube formulas above.

We can write down a formula for each entry in each row of the Pascal triangle.
The first (and only) entry in the first row is(

0

0

)
:= 1.

Using the notation 0! := 1 and n! := 1 · 2 · · · (n − 1) · n for n ∈ N, define the
binomial coefficient n choose k by(

n

k

)
:= n!

(n − k)!k!
for 0 ≤ k ≤ n and n = 0, 1, . . . .

Since
(

n
0

)
=
(

n
n

)
= 1 for all n ∈ N, the following result shows that the

binomial coefficient n over k does produce the (k + 1)st entry in the (n + 1)st
row of Pascal’s triangle.

1.25 Lemma.
If n, k ∈ N and 1 ≤ k ≤ n, then(

n + 1

k

)
=
(

n

k − 1

)
+
(

n

k

)
.

Proof. By definition,(
n

k − 1

)
+
(

n

k

)
= n! k

(n − k + 1)!k! + n!(n − k + 1)

(n − k + 1)!k!
= n!(n + 1)

(n − k + 1)!k! =
(

n + 1

k

)
. �
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26 Chapter 1 The Real Number System

Binomial coefficients can be used to expand the nth power of a sum of
two terms.

1.26 Theorem. [BINOMIAL FORMULA].
If a, b ∈ R, n ∈ N, and 00 is interpreted to be 1, then

(a + b)n =
n∑

k=0

(
n

k

)
an−kbk .

Proof. The proof is by induction on n. The formula is obvious for n = 1.
Suppose that the formula is true for some n ∈ N. Then by the inductive
hypothesis and Postulate 1,

(a + b)n+1 = (a + b)(a + b)n

= (a + b)

(
n∑

k=0

(
n

k

)
an−kbk

)

=
(

n∑
k=0

(
n

k

)
an−k+1bk

)
+
(

n∑
k=0

(
n

k

)
an−kbk+1

)

=
(

an+1 +
n∑

k=1

(
n

k

)
an−k+1bk

)
+
(

bn+1 +
n−1∑
k=0

(
n

k

)
an−kbk+1

)

= an+1 +
n∑

k=1

((
n

k

)
+
(

n

k − 1

))
an−k+1bk + bn+1.

Hence it follows from Lemma 1.25 that

(a + b)n+1 = an+1 +
n∑

k=1

(
n + 1

k

)
an+1−kbk + bn+1 =

n+1∑
k=0

(
n + 1

k

)
an+1−kbk;

that is, the formula is true for n+1. We conclude by induction that the formula
holds for all n ∈ N. �

We close this section with two optional, well-known results that further
demonstrate the power of the Completeness Axiom and its consequences.

∗1.27 Remark. If x > 1 and x /∈ N, then there is an n ∈ N such that n < x <
n + 1.

Proof. By the Archimedean Principle, the set E = {m ∈ N : x < m} is
nonempty. Hence by the Well-Ordering Principle, E has a least element,
say m0.

Set n = m0 − 1. Since m0 ∈ E, n + 1 = m0 > x . Since m0 is least,
n = m0 −1 ≤ x . Since x /∈ N, we also have n �= x . Therefore, n < x < n +1. �
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